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ABSTRACT

We propose a geometrical framework which is adapted for the investigation of
large-scale structures at high redshifts in curved spaces, within the standard
world model of the Universe. It is based on the embedding of the comoving
space into the 4D metric space, which provides us with a useful algebraic repre-
sentation of the positions of objects in space. In particular, the interpretation
and the calculation of geometrical quantities, such as distances between objects,
angles, surfaces and volumes, become obvious. Moreover, elements of cartog-
raphy provide us with a global view of the Universe which accounts for the
curvature. A quasar catalogue is used for observational support. This framework
is implemented in a routine called UNIVERSE VIEWER.
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1 INTRODUCTION

The investigation of the space distribution of large-scale structures (LSSs) and
candidate formation theories is one of the main trends in cosmology at present.
While Euclidean geometry suffices for describing the spatial distribution of
available galaxy catalogues, it is clear that such an analysis when extended to
quasar catalogues requires geometry of curved spaces because of the high redshift
extent (Triay 1981; Fliche, Souriau & Triay 1982). The aim of the present paper
is to provide an understandable framework for cosmography at high redshift. A
useful definition of the comoving frame is given in Section 2, where the ‘distance
between quasars’ is clearly defined (these objects are assumed to be permanent
sources when their observation relates solely to an event, i.e. the emission of the
observed photon in the past). An algebraic representation, which provides us
with straightforward calculations of distances, surfaces, volumes, orientations,
etc., is given in Section 3. Visual inspections of quasar distributions is a powerful
tool for the investigation of LSSs and Section 4 gives a (distortionless) mapping
of the Universe. The Burbidge & Hewitt (1993; hereafter BH) quasar catalogue
(8000 sources) is used as support of our investigation.
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It is clear that such a framework is useless if one limits oneself to a zero curvature
space, as predicted by the inflationary scenario (Gliner 1965; Linde 1982). Such
a scenario is not so clear cut, however, since the short extragalactic distance scale
Hy=87+7km s~! Mpc™! (Pierce et al. 1994) suggests a positive curvature
(Souriau & Triay 1995). Such an issue reconciles estimated ages for metal-poor
Galactic globular clusters 16.5 &+ 2 Gyr (Van den Bergh 1991) with realistic
estimates of the density parameter Qp ~ 0.1 (which accounts for constraints
from the big bang nucleosynthesis or the dynamics of galaxies in clusters).

2 THE WORLD MODEL

The basics of the standard world model are given in Weinberg (1972) and Peebles
(1993). The geometry of the space-time Vj is described by an RW metric:

ds* = dt* — a*(t)do” (1)

where t is the cosmic time, a(t) is the (dimensionless) expansion parameter and
do? is the metric element on a homogeneous three-dimensional manifold Vi,
the comoving space. The sign of its curvature scalar K indicates the type of
geometry: Riemannian (K > 0), Euclidean (K = 0) or Lobatchevski (K < 0).
Let us denote by ¢y the present date (the age of the Universe), and all other
variables in similar way.

By defining the expansion parameter so that its present value ap = 1, V3
becomes the space-time location from where the CMB can be observed as
blackbody radiation at temperature Ty = 2.73 £ 0.03 K (Wilkinson 1990). If
the peculiar velocities are neglected, the redshift z becomes a distance indicator
and the quasars have constant coordinates on V3. Hence, the cosmic microwave
background (CMB) observed from a quasar at redshift z shows blackbody
radiation at a temperature T = Ty /a(t), where

a(t)=(1+2)7" (2)

The space observed through the quasar distribution at redshift z has a curvature
scalar given by K (t) = Koa(t)~2 (see equations 1 and 2). Most of the calculations
use the polynomial

P(a) = Noa* — koa® + Qoa + ag, (3)

where the coefficients are dimensionless parameters. One has the reduced
cosmological constant Ao = (1/3)AH, 2. the curvature parameter kg = KoHy 2=
Ao + Qo + ap — 1; the reduced density parameter g = (8/3)7er0H0_2 > 0,
where pg is the specific density of massive particles (dark matter included) at
present, and where G is Newton’s constant; and finally the parameter oy =
(8/45)m3G (kTy)*h 3 Hy % =~ 2.5 x 107°h~2, which accounts for the presence of



CMB photons as sources of gravity (Souriau 1974), where k is the Boltzmann
constant, h is the Planck constant and h = Hp/(100 km s~ Mpc~!). Although
ap is negligible today, it provides us with a more sensible description of the
Universe at the recombination epoch than the usual approach, which describes
the radiation-dominated era and the matter-dominated era separately. Let us
mention that the above notations are preferred to Q4,Qg, ..., because these
quantities show different behaviours with time. The deceleration parameter
reads go = Qo/2 4+ g — Ao

The Einstein equations provide us with the evolution equation

1 ada
dt = — ——, 4
Hy \/P(a) )

and the integration gives the expansion parameter ¢ — a(t). The cosmological
parameters have to verify the constraints for ensuring an eternal expansion,
in particular having a positive cosmological constant Ay > 0. If Ay = 0 then
the density parameter 2y < 1, otherwise the related dynamics accounts for a
radiation-dominated expansion at an early epoch so that the radiation pressure
pushes the space ‘out’ until the cosmological constant begins to dominate, which
makes the vacuum repulsive and makes it avoid the collapse. Diagrams describing
the qualitative behaviour of cosmological models with A # 0 can be found in the
literature (Carroll, Press & Turner 1992; Souriau & Triay 1995).

2.1 Distances and comoving space

Let Q(z, z) denote a quasar at redshift z. Its line of sight is defined by equatorial
coordinates (RA: right ascension; Dec.: declination), which gives a unitary
3-vector

cos(RA) cos(Dec.)
x = | sin(RA) cos(Dec.) (5)
sin(Dec.)

It turns out that the projection of photon world lines on to V3 are geodesic curves,
which provides us with a meaningful definition of distance. The line of sight x
becomes a tangent vector on V3 to the projection of the light ray. According to
equation (1), the element of geodesic on V3 identifies with the conformal time
do = dt/a(t). Hence, according to equations (2) and (4), the geodesic distance
on V3 of a quasar at redshift z is given by the comoving distance

T

- 6)

T

where 7 is the scale-free comoving distance. This is given by the elliptical integral



! da
=y o

For a dimensionless investigation of LSS, it is convenient to use a reference
manifold of unitary curvature, where the coordinates are angles. Such a repre-
sentation, which is not valid for a flat space, corresponds either to the 3-sphere
S3 when kg > 0 or to the unitary 3-hyperboloid L3 when ko < 0. Let Vs denote
such a manifold; its metric element reads

d6® = | Koldo®, (®)

and is obtained from the metric of V3 merely by a normalization. The distance
on V3 reads

T = T\/w7 (kO 7é O)a (9)

and it is termed angular distance * (see equations 7 and 8). Hence, the angular
distance of a quasar at redshift z is given by

. ! da
&= /Tl /( s T (10)

Once the values of cosmological parameters are chosen, the quasars can be
located on these spaces by using geodesic coordinates at the observer position G
(i.e., the Galaxy at rest with respect to the CMB) according to the following
schema:

(@, 2)r 222 (2, 7)7 € Vs 2 (2,7)r € Vi
|
ko # 0
d

(x,7)r € V3

4To avoid confusion with notations given in the literature, let us write the RW metric as
follows:
dx?
1— Kkx?

ds? = dt? — R%(¢) + x2(d6? + sin? 0 d¢?)
where x = ko|ko| ™" is the sign of the curvature, and if it is not zero then a(t) = R(t)H(;1 |ko]1/2,
otherwise a(t) = R(t)HO_1 and finally one has the radial coordinate

sin 7 if ko >0
X=NT if ko =0
sinh7 if kg < 0.



The formulas providing surfaces and volumes in the comoving space V3 involve
the functions

sin?/vko  ifko >0
I(r)=<r if kg =0 (12)
sinh 7A'/\/—l€0 if kg <0

and

27 — sin(27)]/(4k3/?) if ko > 0
v(t) =< 73 ifkg =0 (13)
[sinh(27) — 27]/[4(=ko)3/?] if ko <O

For practical purposes one limits oneself to geocentric shapes (circles and cones),
and one has

1. an arc of a circle comoving radius, which extends over 6 radian (6 = 27
for a circle), with a length equal to 0I(T)

2. the portion of a sphere extending over w steradian (w = 47 for a sphere),
which has a surface area equal to wl?(7);

3. the volume by wov(T)

3 ELEMENTS OF COSMOGRAPHY

For a flat space (kg = 0), the Euclidean structure defined on the comoving
manifold (either V3 or V3) provides us with an obvious algebraic representation
of the space distribution of quasars. However, it is clear that ky # 0 requires
a different structure, which is the matter of this section. The solution (Triay
1981) is to embed V3 into the metric space R* with a suitable structure which
accounts for different geometries (either the Riemannian or the Lobatchevski:
see equation 11).

3.1 Geodesic reference frame

A reference frame on ‘73 identifies with a mapping R : R* — ‘73; it is the choice
of a particular location on V3 as well as the orientation of the tangent space at
this location. Hereafter, Ry denotes a reference frame so that the position of
quasar Q(z, z) is given by the 4-vector

xsin%) £ b > 0
N 1 0
Q =Ry (x,7) =4 YT (14)
) if kg <0

xsinh 7

cosh 7



where 7 = 7(z) is the angular distance (see equations 5 and 9). It is interesting
to note that:

1. the tangent vector to the geodesic 7 — @, which reads
0 1“?Sf> if ko > 0
—SIin T
Q= i x cosh 7 (15)
) if kg <O

sinh 7

at the Galactic position on the geodesic 7 = 0 identifies as a matter of fact
to the line of sight z;
2. the Galaxy position (T") is given by the 4-vector

r=rp'm) = (7) (10

where 03 is the null 3-vector, according to equation (15), with 7 = 0;
3. if kg > 0 then a quasar at a distance 7 = 7 can be observed over the whole
sky (i.e., towards any line of sight ).

Let (,)§ denote the scalar product with a suitable signature:

(++++) ifko>0

17
(+4++-) ifko<0’ (a7)

Signature = {

Hence, according to equation (14), for any 4-vector @ which locates a quasar
position on V3, we have

1 if kg >0

18
1 ifk < 0. (18)

@Q.Q)F = {

3.2 Calculation of distances and angles

The comoving distance 7 = 7/4/|ko| (see equation 9), between two quasars Q1
and @2, involves the calculation of the related angular distance

cos T if kg >0

. (19)
—cosh7 if kg < 0.

(@123 = {

where the coordinates of 4-vectors )1 and @2 are defined according to equation
(14). Therefore, we have
1. for kg > 0,

cos 7 = cos 01 sin 71 sin 7 + cos 71 cos 7o, (20)



where cos 012 = (x1, 22)3 is the scalar product in the three-dimensional Euclidean
space R3: 2. else if ky < 0,

cosh 7 = cosh 71 cosh 79 — cos(6;2) sinh 71 sinh 75. (21)

Let y; (respectively yr), be the line of the quasar Q; (respectively on the Galaxy),
as observed from the quasar Q3. The angular separation 6,7 between these
directions is merely given by

017 = cos™ ' ((y1, yr)s)- (22)

To avoid cumbersome calculations, it is convenient to choose a reference frame
related to quasar Q2 so that

rai@:) = (}) (2

Hence if ky > 0, then the Galaxy and the quasar ()1 positions are respectively
given by

1 _ (yrsinTy
Rq,(T) = ( cos T > (24)
and
_ sin 7
Rai@) = (47 (25)

where 7 is given by equation (19). Since the scalar product <Ré; (1), Réi Q1)) =
cos 77 is invariant, we obtain

COS 7] — COS T COS Ta

= 26
(v yr)s sin 7 sin 7y (26)
Similarly, if kg < 0 then we obtain
Ccos T cos T — cosh 7
(y1,y1)s = (27)

sin 7 sin(72)



3.3 Euclidean neighbourhood

When using efficient 3D routines implemented on graphics-dedicated computers,
it is interesting to have three-dimensional Cartesian coordinates of structures
within their vicinity. Let us assume that the structure lies near quasar Q2; the
goal is to calculate the three-dimensional Cartesian coordinates of quasar Q).
These are given by the 3-vector 7y; where (y1,7)g, are the geodesic coordinates
(see equation 11).

The coordinate transformations can be calculated by using the group of V3
symmetries, which correspond to displacements from T to Q2 and 3D rotations
of vector y1 ‘in the sky of @2’ These rotations are performed by means of matrix
M € 50(3) defined in term of Euler’s angles (¢, 0, ). For the trivial case ko = 0,
the displacements on V3 correspond obviously to translations in the Euclidean
three-dimensional space. For kg # 0, one uses displacements on the reference
manifold Vj. They are performed by means of matrix Ré;RT (equations 16 and
23).

Let us denote 7, = xoxh the 3 x 3 projection matrix upon x, where zf is
the covector transposed of x5 and 7, = (13 — zo2%) the orthogonal projection
matrix, where 13 is the 3 x 3 unity matrix. A little algebra shows that

RorRr = (ﬂog %3> +C, (28)

where g, € SO(3) is a 3 x 3 matrix which accounts for a rotation about zs,
and C is the 4 x 4 matrix given by

_ [cos(Tp)my,  —sin(fy)zo (29)
~\ sin(fy)ad cos(72)
if ko > 0, otherwise (ko < 0)
[ cosh(fo)m}t  —sinh(f2)xs
€= (— sinh(f'g)xgtz cosh(72) (30)

For the present purposes, the matrix p,, can be reduced to unity p,, = I3,
since rotations can be performed on y; later on.

Therefore, the line of sight of quasar @1 in the sky of Q)5 is given by the following
unitary 3-vector: if kg > 0 then

Sin(f'l).’l,‘l + [Sin(ﬁ - 7A'2> — Sin(fj)](f'l, l‘2>3$2
sin 7

Y1 = (31)

where 7 is the angular distance between @; and Q2 given in equation (9),
otherwise if kg < 0 then



sinh(71)xy + [sinh(F1 + 7o) — sinh(71)]{(z1, z2)322
sinh(7)

Y1 = (32)

It is clear that these formulas are in agreement with equations (26) and (27).

3.4 Non-singular embedding

The quasars positions on V3 (or 173*) are deduced by scaling from V. However,
it is clear that the above system of coordinates is not adapted for investigations
which require variations of kg from negative to positive values, since T goes
to infinity when kg — 0. In order to avoid this singularity, the origin of the
reference frame on V3 must be shifted so that T lies at the origin. Hence, we
obtain the following coordinates:

1 -1 -1
Qr(r,7) = W[RT Q) - Ry (1] (33)

see equations (16) and (14). Hence, one can easily check (by expanding the
trigonometric or exponential functions at kg = 0) that such a coordinate system
describes continuous deformations of the quasars distribution at kg ~ 0,

Qr(x,7) ~ Hiox. (34)

4 CARTOGRAPHY OF THE UNIVERSE

The main difficulty in addition to that of geometrical effects is to disentangle
real structures and artificial ones. It turns out that we obtain sensible results by
using orthogonal projections of V3 on to two-dimensional planes. A maximum of
six orthogonal 2-planes are required for having complementary information. Let
Dr=1,3 be unitary orthogonal 3-vectors; they can be written in terms of 3-vectors
forming the local frame ex—; 3 (by using Euler’s angles ¢,6,1) ®. The basis of a
projection plane consists of two 4-vectors chosen among the following;:

Py = (013) P, = (%i) (i=1,3). (35)

The projections are designated by means index couples ‘i-j’ related to the 4-
vectors defining the plane. These maps are classified with respect to geometrical
properties in two categories:

1. the edge-on views (0-i), with 0 <4 < 3. If ko > 0 then the whole Universe
is projected on to the unitary disc, else (kg < 0) within a unitary hyperbola,
and T is projected on to the edge of the map;

5For example, p3 (RA = «, Dec. = §), p1 is given by a rotation of angle 1 about p3 of a
unitary vector « e3 X p3, and p2 = p3 X p1.



2. the face-on views (i-j), with 0 < 7 < j < 3. The whole Universe is projected
on to a disc, and T is projected on to its centre.

In the following subsections, these maps are discussed regarding the distortion
problem and the recognition of selection effects in observation. Let us mention
that the selection effects depend either on the line of sight x or the redshift z,
with no correlation between these variables , which makes the bogus structures
easily recognizable since they show geocentric shapes.

4.1 Global views of the Universe

The coordinates of quasars Q(z, z) are given by the following scalar products,
u; = (P;,R;"(x,7))4 in the Euclidean space R*. We obtain

w — cosT if kg >0 (36)
cosh? ifky <O
sin 7 if kg >0
i = y M X 37
ui = (@, po)s {sinh(f‘) if ko < 0. (37)

The zone of obscuration arising from the Galactic plane appears clearly when
one chooses the north galactic pole (Dec. = 90°) as vectors p; and ps lying in
the disc of the Galaxy (RA=0, Dec. 0°). We choose 2 = 0.2 and A = 1.2 in the
case of positive curvature (ko = 0.4) world model or A = 0 in the case of negative
curvature (kg = —0.8), as support of our analysis on the geometrical effects.

4.1.1 Edge-on-views

In the edge-on views [views (0 — ¢);0] the Galaxy is located at (1,0), the border
of the distribution. The global characteristics of these maps depend on the sign
of the curvature parameter k.

1. If kg > O then the quasar distribution lies within a unitary disc, since
ud +u? < 1. In Fig. (1) the Galaxy is located at the top edge of the disc.
Structures along the ellipses are selection effects which depend on the line
of sight. The related equation reads f;u2 +u? = 3; where 3; = (z,p;)3 < 1.
The obscuration zone of the galactic plane is responsible for the lack of
dots along the edge of the unitary disc (ellipse of unit ellipticity), since
p1 lies towards the North Galactic Pole. The horizontal structures along
chords at constant ug (i.e., curves at constant 7) are a result of selection
effects on redshift.

6Indeed, the first one is related to surveys sampling, such as pencil beams, ..., when the
second is based on spectroscopic criteria, such as the chromatic sensitivity of receivers, ...
The identification of main emission lines Mg II, Ly a N v, C III, C IV, Si IV, ... is possible
when they lie within the observable wavelength range.
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2. If kg < 0 then quasar distribution lies within a unitary hyperbola, since
ud —u? > 1: see Fig. (2). Similarly, as above, the bogus structures owing
to redshift selection effects lie at constant ug, while the selection effects on
the line of sight lie along hyperbolae of equation f;u3 —u? = 3; < 1.

[Figure 1] Edge-on view (0-1) of the Universe through the space distribution
of the BH quasar catalogue, by assuming a positive curvature kg = 0.4. The
whole Universe is projected on to a unitary disc, and the Galazy is located at
the top edge, where the number density is the highest. The bottom edge of the
distribution corresponds to a redshift z ~ 4, which shows that the sample of all
known quasars fills, in space, slightly more than the half of the Universe (the
unitary disc is not drawn). There is a lack of sources along the edge of the
unitary disc owing to selection effects in observation which corresponds to the
obscuration zone of the galactic plane. Similarly the structures along ellipses are
a result of selection effects which depend on the line of sight. The horizontal
structures (along chords) are a result of selection effects on redshift.
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[Figure 2] Edge-on view (0-1) of the Universe, by assuming a negative curvature
ko = —0.8. The space distribution of the BH quasar catalogue is projected within
a unitary hyperbola up to redshift z ~ 4. The lack of sources along the edge of
the hyperbola is owing to the zone of avoidance in the Galactic plane.

4.1.2 Face-on views

In the face-on views [views (i — j)o<i<;<3], the Galaxy is located at (0,0), the
centre of the diagram, and the quasar distribution lies within a disc; see Figs
3 and 4. The pencil beams are projected on to radii, which defines the shape
of related bogus structures owing to selection effects on the line of sight. The
vertical zone of avoidance is caused by the obscuration of the Galactic plane. Let
us mention that the bogus structures owing to redshift selection effects cannot
be recognized in these maps 7. While these projections offer fewer possibilities
than the edge-on views for the identification of selection effects, they provide us

"Indeed, a region of the Universe at redshift z is projected within a disc of radius given by
sin 7(z) if kg > 0 or sinh 7(2) if kg < 0, which does not indicate the distance.
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with complementary information.

[Figure 3] Face-on view (1-2) of the Universe through the space distribution of
the BH quasar catalogue, assuming Qg = 0.2 and Ao = 1.2.
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[Figure 4] Face-on view (1-2) of the Universe through the space distribution of
the BH quasar catalogue, assuming Qg = 0.2 and Ag = 0.

4.2 About the distortion problem

The main problem for visual analysis is related to the distortion effect (e.g., as
in maps of the world). To investigate such a problem we have to calculate the
image of the volume element on Vs using the above projections. It turns out
that the volume element dV can be written as follows:

,7A.
av =d d
(cosv) dg x & if k<0,

() (38)

sin?(#
sinh?(

d
)

where v is the angle defined by (x,ps)s = cosv. Hence, it is obvious that
the image reads dudv. Indeed, for the edge-on view, the Jacobian of the
transformation of variables (7, cosv) — (u,v) reads

14



sin=2(#)  if ko >0
-2

(7) if ko <O, (39)

J[(#,cosv) = (u,v)] = { .

sinh
and the volume element may thus be transformed using dV = dudv d¢. Hence,
the integration over ¢ provides us with du dv, the image of the volume element
on the map 3. The face-on view shows the same advantage. Indeed, the
case kg > 0 is obvious, for symmetry reasons, while for ky < 0 we use the
variable transformation [7,u = sinh(7) cos(v), v = sinh(7) cos(¢)] — (7, v, $) the
Jacobian is equal to sinth(%). Therefore, we understood that the shapes of LSSs
are preserved ? in the projections which provide us with the above maps, which
ensures that the structures that can be seen on these maps do not correspond to
artefacts.

5 CONCLUSION

This paper introduces an efficient geometrical framework for the investigation of
large-scale structures at high redshift in curved spaces. The world models are
given by Friedmann-Lemaitre models of Universe. This framework is implemented
in a free-share routine (Universe Viewer) developed on a Unix station, which is
available on the internet network at node cpt.univ-mrs.fr/cosmology/UV.
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