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ABSTRACT
We propose a geometrical framework which is adapted for the investigation of
large-scale structures at high redshifts in curved spaces, within the standard
world model of the Universe. It is based on the embedding of the comoving
space into the 4D metric space, which provides us with a useful algebraic repre-
sentation of the positions of objects in space. In particular, the interpretation
and the calculation of geometrical quantities, such as distances between objects,
angles, surfaces and volumes, become obvious. Moreover, elements of cartog-
raphy provide us with a global view of the Universe which accounts for the
curvature. A quasar catalogue is used for observational support. This framework
is implemented in a routine called UNIVERSE VIEWER.
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1 INTRODUCTION
The investigation of the space distribution of large-scale structures (LSSs) and
candidate formation theories is one of the main trends in cosmology at present.
While Euclidean geometry suffices for describing the spatial distribution of
available galaxy catalogues, it is clear that such an analysis when extended to
quasar catalogues requires geometry of curved spaces because of the high redshift
extent (Triay 1981; Fliche, Souriau & Triay 1982). The aim of the present paper
is to provide an understandable framework for cosmography at high redshift. A
useful definition of the comoving frame is given in Section 2, where the ‘distance
between quasars’ is clearly defined (these objects are assumed to be permanent
sources when their observation relates solely to an event, i.e. the emission of the
observed photon in the past). An algebraic representation, which provides us
with straightforward calculations of distances, surfaces, volumes, orientations,
etc., is given in Section 3. Visual inspections of quasar distributions is a powerful
tool for the investigation of LSSs and Section 4 gives a (distortionless) mapping
of the Universe. The Burbidge & Hewitt (1993; hereafter BH) quasar catalogue
(8000 sources) is used as support of our investigation.
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It is clear that such a framework is useless if one limits oneself to a zero curvature
space, as predicted by the inflationary scenario (Gliner 1965; Linde 1982). Such
a scenario is not so clear cut, however, since the short extragalactic distance scale
H0 = 87 ± 7 km s−1 Mpc−1 (Pierce et al. 1994) suggests a positive curvature
(Souriau & Triay 1995). Such an issue reconciles estimated ages for metal-poor
Galactic globular clusters 16.5 ± 2 Gyr (Van den Bergh 1991) with realistic
estimates of the density parameter Ω0 ∼ 0.1 (which accounts for constraints
from the big bang nucleosynthesis or the dynamics of galaxies in clusters).

2 THE WORLD MODEL
The basics of the standard world model are given in Weinberg (1972) and Peebles
(1993). The geometry of the space-time V4 is described by an RW metric:

ds4 = dt2 − a2(t)dσ2 (1)

where t is the cosmic time, a(t) is the (dimensionless) expansion parameter and
dσ2 is the metric element on a homogeneous three-dimensional manifold V3,
the comoving space. The sign of its curvature scalar K indicates the type of
geometry: Riemannian (K > 0), Euclidean (K = 0) or Lobatchevski (K < 0).
Let us denote by t0 the present date (the age of the Universe), and all other
variables in similar way.

By defining the expansion parameter so that its present value a0 = 1, V3
becomes the space-time location from where the CMB can be observed as
blackbody radiation at temperature T0 = 2.73 ± 0.03 K (Wilkinson 1990). If
the peculiar velocities are neglected, the redshift z becomes a distance indicator
and the quasars have constant coordinates on V3. Hence, the cosmic microwave
background (CMB) observed from a quasar at redshift z shows blackbody
radiation at a temperature T = T0/a(t), where

a(t) = (1 + z)−1 (2)

The space observed through the quasar distribution at redshift z has a curvature
scalar given by K(t) = K0a(t)−2 (see equations 1 and 2). Most of the calculations
use the polynomial

P (a) = λ0a
4 − k0a

2 + Ω0a+ α0, (3)

where the coefficients are dimensionless parameters. One has the reduced
cosmological constant λ0 = (1/3)ΛH−2

0 ; the curvature parameter k0 = K0H
−2
0 =

λ0 + Ω0 + α0 − 1; the reduced density parameter Ω0 = (8/3)πGρ0H
−2
0 > 0,

where ρ0 is the specific density of massive particles (dark matter included) at
present, and where G is Newton’s constant; and finally the parameter α0 =
(8/45)π3G(kT0)4ℏ−3H−2

0 ≈ 2.5 × 10−5h−2, which accounts for the presence of
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CMB photons as sources of gravity (Souriau 1974), where k is the Boltzmann
constant, ℏ is the Planck constant and h = H0/(100 km s−1 Mpc−1). Although
α0 is negligible today, it provides us with a more sensible description of the
Universe at the recombination epoch than the usual approach, which describes
the radiation-dominated era and the matter-dominated era separately. Let us
mention that the above notations are preferred to ΩΛ,ΩR, . . ., because these
quantities show different behaviours with time. The deceleration parameter
reads q0 = Ω0/2 + α0 − λ0.

The Einstein equations provide us with the evolution equation

dt = 1
H0

a da√
P (a)

, (4)

and the integration gives the expansion parameter t → a(t). The cosmological
parameters have to verify the constraints for ensuring an eternal expansion,
in particular having a positive cosmological constant λ0 ≥ 0. If λ0 = 0 then
the density parameter Ω0 ≤ 1, otherwise the related dynamics accounts for a
radiation-dominated expansion at an early epoch so that the radiation pressure
pushes the space ‘out’ until the cosmological constant begins to dominate, which
makes the vacuum repulsive and makes it avoid the collapse. Diagrams describing
the qualitative behaviour of cosmological models with Λ ̸= 0 can be found in the
literature (Carroll, Press & Turner 1992; Souriau & Triay 1995).

2.1 Distances and comoving space

Let Q(x, z) denote a quasar at redshift z. Its line of sight is defined by equatorial
coordinates (RA: right ascension; Dec.: declination), which gives a unitary
3-vector

x =

cos(RA) cos(Dec.)
sin(RA) cos(Dec.)

sin(Dec.)

 (5)

It turns out that the projection of photon world lines on to V3 are geodesic curves,
which provides us with a meaningful definition of distance. The line of sight x
becomes a tangent vector on V3 to the projection of the light ray. According to
equation (1), the element of geodesic on V3 identifies with the conformal time
dσ = dt/a(t). Hence, according to equations (2) and (4), the geodesic distance
on V3 of a quasar at redshift z is given by the comoving distance

r = τ

H0
(6)

where τ is the scale-free comoving distance. This is given by the elliptical integral
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τ(z) =
∫ 1

(1+z)−1

da√
P (a)

. (7)

For a dimensionless investigation of LSS, it is convenient to use a reference
manifold of unitary curvature, where the coordinates are angles. Such a repre-
sentation, which is not valid for a flat space, corresponds either to the 3-sphere
S3 when k0 > 0 or to the unitary 3-hyperboloid L3 when k0 < 0. Let V̂3 denote
such a manifold; its metric element reads

dσ̂2 = |K0|dσ2, (8)

and is obtained from the metric of V3 merely by a normalization. The distance
on V̂3 reads

τ̂ = τ
√

|k0|, (k0 ̸= 0), (9)

and it is termed angular distance 4 (see equations 7 and 8). Hence, the angular
distance of a quasar at redshift z is given by

σ̂ =
√

|k0|
∫ 1

(1+z)−1

da√
P (a)

, (10)

Once the values of cosmological parameters are chosen, the quasars can be
located on these spaces by using geodesic coordinates at the observer position G
(i.e., the Galaxy at rest with respect to the CMB) according to the following
schema:

(x, z)T
k0,Ω0−−−→ (x, τ)T ∈ Ṽ3

H0−−→ (x, r)T ∈ V3
|

k0 ̸= 0
↓

(x, τ̂)T ∈ V3

4To avoid confusion with notations given in the literature, let us write the RW metric as
follows:

ds2 = dt2 −R2(t)
[

dχ2

1 − κχ2 + χ2(dθ2 + sin2 θ dϕ2)
]

where κ = k0|k0|−1 is the sign of the curvature, and if it is not zero then a(t) = R(t)H−1
0 |k0|1/2,

otherwise a(t) = R(t)H−1
0 and finally one has the radial coordinate

χ =

sin τ̂ if k0 > 0
τ if k0 = 0
sinh τ̂ if k0 < 0.
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The formulas providing surfaces and volumes in the comoving space Ṽ3 involve
the functions

l(τ) =


sin τ̂ /

√
k0 if k0 > 0

τ if k0 = 0
sinh τ̂ /

√
−k0 if k0 < 0

(12)

and

v(τ) =


[2τ̂ − sin(2τ̂)]/(4k3/2

0 ) if k0 > 0
τ3 if k0 = 0
[sinh(2τ̂) − 2τ̂ ]/[4(−k0)3/2] if k0 < 0

(13)

For practical purposes one limits oneself to geocentric shapes (circles and cones),
and one has

1. an arc of a circle comoving radius, which extends over θ radian (θ = 2π
for a circle), with a length equal to θl(τ)

2. the portion of a sphere extending over ω steradian (ω = 4π for a sphere),
which has a surface area equal to ωl2(τ);

3. the volume by ωv(τ)

3 ELEMENTS OF COSMOGRAPHY
For a flat space (k0 = 0), the Euclidean structure defined on the comoving
manifold (either Ṽ3 or V3) provides us with an obvious algebraic representation
of the space distribution of quasars. However, it is clear that k0 ̸= 0 requires
a different structure, which is the matter of this section. The solution (Triay
1981) is to embed V̂3 into the metric space R4 with a suitable structure which
accounts for different geometries (either the Riemannian or the Lobatchevski:
see equation 11).

3.1 Geodesic reference frame

A reference frame on V̂3 identifies with a mapping R : R4 → V̂3; it is the choice
of a particular location on V3 as well as the orientation of the tangent space at
this location. Hereafter, RT denotes a reference frame so that the position of
quasar Q(x, z) is given by the 4-vector

Q = R−1
T (x, τ̂) =



(
x sin τ̂
cos τ̂

)
if k0 > 0(

x sinh τ̂
cosh τ̂

)
if k0 < 0

(14)
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where τ̂ = τ̂(z) is the angular distance (see equations 5 and 9). It is interesting
to note that:

1. the tangent vector to the geodesic τ̂ → Q, which reads

Qt = dQ

dτ̂
=



(
x cos τ̂
− sin τ̂

)
if k0 > 0(

x cosh τ̂
sinh τ̂

)
if k0 < 0

(15)

at the Galactic position on the geodesic τ̂ = 0 identifies as a matter of fact
to the line of sight x;

2. the Galaxy position (T ) is given by the 4-vector

T = R−1
T (T ) =

(
03
1

)
(16)

where 03 is the null 3-vector, according to equation (15), with τ̂ = 0;
3. if k0 > 0 then a quasar at a distance τ̂ = π can be observed over the whole

sky (i.e., towards any line of sight x).

Let ⟨, ⟩S
4 denote the scalar product with a suitable signature:

Signature =
{

(+ + ++) if k0 > 0
(+ + +−) if k0 < 0

, (17)

Hence, according to equation (14), for any 4-vector Q which locates a quasar
position on V̂3, we have

⟨Q,Q⟩S
4 =

{
1 if k0 > 0
−1 if k0 < 0.

(18)

3.2 Calculation of distances and angles

The comoving distance τ = τ̂ /
√

|k0| (see equation 9), between two quasars Q1
and Q2, involves the calculation of the related angular distance

⟨Q1, Q2⟩S
4 =

{
cos τ̂ if k0 > 0
− cosh τ̂ if k0 < 0.

(19)

where the coordinates of 4-vectors Q1 and Q2 are defined according to equation
(14). Therefore, we have
1. for k0 > 0,

cos τ̂ = cos θ12 sin τ̂1 sin τ̂2 + cos τ̂1 cos τ̂2, (20)
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where cos θ12 = ⟨x1, x2⟩3 is the scalar product in the three-dimensional Euclidean
space R3; 2. else if k0 < 0,

cosh τ̂ = cosh τ̂1 cosh τ̂2 − cos(θ12) sinh τ̂1 sinh τ̂2. (21)

Let y1 (respectively yT ), be the line of the quasar Q1 (respectively on the Galaxy),
as observed from the quasar Q2. The angular separation θ1T between these
directions is merely given by

θ1T = cos−1(⟨y1, yT ⟩3). (22)

To avoid cumbersome calculations, it is convenient to choose a reference frame
related to quasar Q2 so that

R−1
Q2

(Q2) =
(

03
1

)
(23)

Hence if k0 > 0, then the Galaxy and the quasar Q1 positions are respectively
given by

R−1
Q2

(T ) =
(
yT sin τ̂2

cos τ̂2

)
(24)

and

R−1
Q2

(Q1) =
(
y1 sin τ̂
cos τ̂

)
(25)

where τ̂ is given by equation (19). Since the scalar product ⟨R−1
Q2

(T ),R−1
Q2

(Q1)⟩S
4 =

cos τ̂1 is invariant, we obtain

⟨y1, yT ⟩3 = cos τ̂1 − cos τ̂ cos τ̂2

sin τ̂ sin τ̂2
(26)

Similarly, if k0 < 0 then we obtain

⟨y1, yT ⟩3 = cos τ̂ cos τ̂ − cosh τ̂1

sin τ̂ sin(τ̂2) . (27)
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3.3 Euclidean neighbourhood

When using efficient 3D routines implemented on graphics-dedicated computers,
it is interesting to have three-dimensional Cartesian coordinates of structures
within their vicinity. Let us assume that the structure lies near quasar Q2; the
goal is to calculate the three-dimensional Cartesian coordinates of quasar Q1.
These are given by the 3-vector τy1 where (y1, τ)Q2 are the geodesic coordinates
(see equation 11).

The coordinate transformations can be calculated by using the group of V3
symmetries, which correspond to displacements from T to Q2 and 3D rotations
of vector y1 ‘in the sky of Q2’. These rotations are performed by means of matrix
M ∈ SO(3) defined in term of Euler’s angles (ϕ, θ, ψ). For the trivial case k0 = 0,
the displacements on V3 correspond obviously to translations in the Euclidean
three-dimensional space. For k0 ̸= 0, one uses displacements on the reference
manifold V̂3. They are performed by means of matrix R−1

Q2
RT (equations 16 and

23).

Let us denote π+
x2

= x2x
t
2 the 3 × 3 projection matrix upon x2, where xt

2 is
the covector transposed of x2 and π−

x2
= (13 − x2x

t
2) the orthogonal projection

matrix, where 13 is the 3 × 3 unity matrix. A little algebra shows that

R−1
Q2

RT =
(
µx2π

−
x2

03
0t

3 0

)
+ C, (28)

where µx2 ∈ SO(3) is a 3 × 3 matrix which accounts for a rotation about x2,
and C is the 4 × 4 matrix given by

C =
(

cos(τ̂2)π+
x2

− sin(τ̂2)x2
sin(τ̂2)xt

2 cos(τ̂2)

)
(29)

if k0 > 0, otherwise (k0 < 0)

C =
(

cosh(τ̂2)π+
x2

− sinh(τ̂2)x2
− sinh(τ̂2)xt

2 cosh(τ̂2)

)
(30)

For the present purposes, the matrix µx2 can be reduced to unity µx2 = Π3,
since rotations can be performed on y1 later on.

Therefore, the line of sight of quasar Q1 in the sky of Q2 is given by the following
unitary 3-vector: if k0 > 0 then

y1 = sin(τ̂1)x1 + [sin(τ̂1 − τ̂2) − sin(τ̂1)]⟨τ̂1, x2⟩3x2

sin τ̂ (31)

where τ̂ is the angular distance between Q1 and Q2 given in equation (9),
otherwise if k0 < 0 then
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y1 = sinh(τ̂1)x1 + [sinh(τ̂1 + τ̂2) − sinh(τ̂1)]⟨x1, x2⟩3x2

sinh(τ̂) (32)

It is clear that these formulas are in agreement with equations (26) and (27).

3.4 Non-singular embedding

The quasars positions on V3 (or V̂ ∗
3 ) are deduced by scaling from V̂3. However,

it is clear that the above system of coordinates is not adapted for investigations
which require variations of k0 from negative to positive values, since T goes
to infinity when k0 → 0. In order to avoid this singularity, the origin of the
reference frame on V3 must be shifted so that T lies at the origin. Hence, we
obtain the following coordinates:

QT (x, τ) = 1
H0
√

|k0|
[R−1

T (Q) − R−1
T (T )] (33)

see equations (16) and (14). Hence, one can easily check (by expanding the
trigonometric or exponential functions at k0 = 0) that such a coordinate system
describes continuous deformations of the quasars distribution at k0 ≈ 0,

QT (x, τ) ∼ τ

H0
x. (34)

4 CARTOGRAPHY OF THE UNIVERSE
The main difficulty in addition to that of geometrical effects is to disentangle
real structures and artificial ones. It turns out that we obtain sensible results by
using orthogonal projections of V3 on to two-dimensional planes. A maximum of
six orthogonal 2-planes are required for having complementary information. Let
pk=1,3 be unitary orthogonal 3-vectors; they can be written in terms of 3-vectors
forming the local frame ek=1,3 (by using Euler’s angles ϕ, θ, ψ) 5. The basis of a
projection plane consists of two 4-vectors chosen among the following:

P0 =
(

03
1

)
Pi =

(
pi

0

)
(i = 1, 3). (35)

The projections are designated by means index couples ‘i-j’ related to the 4-
vectors defining the plane. These maps are classified with respect to geometrical
properties in two categories:

1. the edge-on views (0-i), with 0 < i ≤ 3. If k0 > 0 then the whole Universe
is projected on to the unitary disc, else (k0 < 0) within a unitary hyperbola,
and T is projected on to the edge of the map;

5For example, p3 (RA = α, Dec. = δ), p1 is given by a rotation of angle ψ about p3 of a
unitary vector ∝ e3 × p3, and p2 = p3 × p1.
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2. the face-on views (i-j), with 0 < i < j ≤ 3. The whole Universe is projected
on to a disc, and T is projected on to its centre.

In the following subsections, these maps are discussed regarding the distortion
problem and the recognition of selection effects in observation. Let us mention
that the selection effects depend either on the line of sight x or the redshift z,
with no correlation between these variables 6, which makes the bogus structures
easily recognizable since they show geocentric shapes.

4.1 Global views of the Universe

The coordinates of quasars Q(x, z) are given by the following scalar products,
ui = ⟨Pi,R−1

T (x, τ̂)⟩4 in the Euclidean space R4. We obtain

u0 =
{

cos τ̂ if k0 > 0
cosh τ̂ if k0 < 0

(36)

ui = ⟨x, pi⟩3 ×

{
sin τ̂ if k0 > 0
sinh(τ̂) if k0 < 0.

(37)

The zone of obscuration arising from the Galactic plane appears clearly when
one chooses the north galactic pole (Dec. = 90◦) as vectors p1 and p2 lying in
the disc of the Galaxy (RA=0, Dec. 0°). We choose Ω = 0.2 and λ = 1.2 in the
case of positive curvature (k0 = 0.4) world model or λ = 0 in the case of negative
curvature (k0 = −0.8), as support of our analysis on the geometrical effects.

4.1.1 Edge-on-views

In the edge-on views [views (0 − i)i̸=0] the Galaxy is located at (1,0), the border
of the distribution. The global characteristics of these maps depend on the sign
of the curvature parameter k0.

1. If k0 > 0 then the quasar distribution lies within a unitary disc, since
u2

0 + u2
i ≤ 1. In Fig. (1) the Galaxy is located at the top edge of the disc.

Structures along the ellipses are selection effects which depend on the line
of sight. The related equation reads βiu

2
0 +u2

i = βi where βi = ⟨x, pi⟩2
3 ≤ 1.

The obscuration zone of the galactic plane is responsible for the lack of
dots along the edge of the unitary disc (ellipse of unit ellipticity), since
p1 lies towards the North Galactic Pole. The horizontal structures along
chords at constant u0 (i.e., curves at constant τ̂) are a result of selection
effects on redshift.

6Indeed, the first one is related to surveys sampling, such as pencil beams, . . . , when the
second is based on spectroscopic criteria, such as the chromatic sensitivity of receivers, . . .
The identification of main emission lines Mg II, Ly α N v, C III, C IV, Si IV, . . . is possible
when they lie within the observable wavelength range.
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2. If k0 < 0 then quasar distribution lies within a unitary hyperbola, since
u2

0 − u2
i ≥ 1: see Fig. (2). Similarly, as above, the bogus structures owing

to redshift selection effects lie at constant u0, while the selection effects on
the line of sight lie along hyperbolae of equation βiu

2
0 − u2

i = βi ≤ 1.

[Figure 1] Edge-on view (0-1) of the Universe through the space distribution
of the BH quasar catalogue, by assuming a positive curvature k0 = 0.4. The
whole Universe is projected on to a unitary disc, and the Galaxy is located at
the top edge, where the number density is the highest. The bottom edge of the
distribution corresponds to a redshift z ≈ 4, which shows that the sample of all
known quasars fills, in space, slightly more than the half of the Universe (the
unitary disc is not drawn). There is a lack of sources along the edge of the
unitary disc owing to selection effects in observation which corresponds to the
obscuration zone of the galactic plane. Similarly the structures along ellipses are
a result of selection effects which depend on the line of sight. The horizontal
structures (along chords) are a result of selection effects on redshift.
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[Figure 2] Edge-on view (0-1) of the Universe, by assuming a negative curvature
k0 = −0.8. The space distribution of the BH quasar catalogue is projected within
a unitary hyperbola up to redshift z ≈ 4. The lack of sources along the edge of
the hyperbola is owing to the zone of avoidance in the Galactic plane.

4.1.2 Face-on views

In the face-on views [views (i− j)0<i<j≤3], the Galaxy is located at (0,0), the
centre of the diagram, and the quasar distribution lies within a disc; see Figs
3 and 4. The pencil beams are projected on to radii, which defines the shape
of related bogus structures owing to selection effects on the line of sight. The
vertical zone of avoidance is caused by the obscuration of the Galactic plane. Let
us mention that the bogus structures owing to redshift selection effects cannot
be recognized in these maps 7. While these projections offer fewer possibilities
than the edge-on views for the identification of selection effects, they provide us

7Indeed, a region of the Universe at redshift z is projected within a disc of radius given by
sin τ̂(z) if k0 > 0 or sinh τ̂(z) if k0 < 0, which does not indicate the distance.
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with complementary information.

[Figure 3] Face-on view (1-2) of the Universe through the space distribution of
the BH quasar catalogue, assuming Ω0 = 0.2 and λ0 = 1.2.
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[Figure 4] Face-on view (1-2) of the Universe through the space distribution of
the BH quasar catalogue, assuming Ω0 = 0.2 and λ0 = 0.

4.2 About the distortion problem

The main problem for visual analysis is related to the distortion effect (e.g., as
in maps of the world). To investigate such a problem we have to calculate the
image of the volume element on V̂3 using the above projections. It turns out
that the volume element dV can be written as follows:

dV = d(cos ν) dϕ×

{
sin2(τ̂) dτ̂ if k0 > 0
sinh2(τ̂) dτ̂ if k0 < 0,

(38)

where ν is the angle defined by ⟨x, p3⟩3 = cos ν. Hence, it is obvious that
the image reads du dv. Indeed, for the edge-on view, the Jacobian of the
transformation of variables (τ̂ , cos ν) → (u, v) reads
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J [(τ̂ , cos ν) → (u, v)] =
{

sin−2(τ̂) if k0 > 0
sinh−2(τ̂) if k0 < 0,

(39)

and the volume element may thus be transformed using dV = du dv dϕ. Hence,
the integration over ϕ provides us with du dv, the image of the volume element
on the map 8. The face-on view shows the same advantage. Indeed, the
case k0 > 0 is obvious, for symmetry reasons, while for k0 < 0 we use the
variable transformation [τ̂ , u = sinh(τ̂) cos(v), v = sinh(τ̂) cos(ϕ)] → (τ̂ , v, ϕ) the
Jacobian is equal to sinh−2(τ̂). Therefore, we understood that the shapes of LSSs
are preserved 9 in the projections which provide us with the above maps, which
ensures that the structures that can be seen on these maps do not correspond to
artefacts.

5 CONCLUSION
This paper introduces an efficient geometrical framework for the investigation of
large-scale structures at high redshift in curved spaces. The world models are
given by Friedmann-Lemaitre models of Universe. This framework is implemented
in a free-share routine (Universe Viewer) developed on a Unix station, which is
available on the internet network at node cpt.univ-mrs.fr/cosmology/UV.
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